Смесеобразовательный блог (bmwservice) wrote,
Смесеобразовательный блог
bmwservice

FAQ по модификаторам трения: борьба с килограммами

Короткая выжимка некоторых публикаций блога, она же FAQ:

Суть проблемы:

В современном двигателе содержится целый ряд узлов с контактным трением (в основном - скольжения) типа "металл-металл", не всегда и не полностью разделямых смазочным материалом. Следствием этого является не только физический износ, но и ощутимые потери мощности в неэффективных режимах работы (низкие обороты, холостой ход) и, что особенно важно, высокие потери в переходном процессе.

Простыми словами: металлы в контактных группах изнашиваются, режим разгона-торможения двигателем (включая эластичность) становится менее эффективным. За прошедшее время, ГРМ двигателей значительно усложнились, усилие на пружинах увеличилось в некоторых случаях (сплошь и рядом сейчас нормой становятся сверхфорсированные турбомоторы) до сотни(!) килограмм:


Конструктивно с этим (увеличившейся нагрузкой и потерями) пытаются бороться (за "экологию и расход топлива"), например, введением комбинированых пар трения типа скольжение-качение:


Но это, очевидно, лишь полумеры: невозможно столь стремительно адаптироваться металловедением и трибологией под чистую физику: сравним моторы прошлого и настоящего с одинаковым литражом блока. Классический M20B20 и современный B48B20: 120 л.с. против 255! 170 Нм против 350...  Как видно, рост форсировки более чем в два раза.
Кроме того, эти суперфорсированные моторы сегодня вынуждены таскать кузова существенно большей тяжести.

Хотя даже без этого, в ставших уже привычными 16-клапанных ГРМ умеренно, по сегодняшним меркам, форсированных двигателей, усилие преднатяга пружины составляет весьма серьезные 50-60 кг:


Все эти значения усилий почти точно соответствуют реальной нагрузке в паре кулачок-толкатель для типичной приведенной поверхности:


Как видно, в пиках имеем все те же десятки кгс на мм квадратный. Учтем, что смазанное трение вида сталь-сталь(чугун) имеет коэффициент около 0,1-0,05 (зависит от нагрузки и исходной шероховатости).

При стандартном современном ГРМ, с четверкой единовременно открытых клапанов, разговор пойдет о величинах эквивалентных 10-30 кгс/мм квадратный потерях на трение. Чтобы почувствовать их (потери), попробуйте провернуть двигатель "от руки" с ГРМ (свечи вывернуты) и без ГРМ.

Подобный натурный эксперимент с моментом страгивания двигателя можно осуществить и, например, запуская мотор газонокосилки. Но такие моторы, как известно, имеют низкие рабочие обороты, компрессию и, следовательно, сравнительно низкое усилие на старте.

Наглядный эквивалент переходного процесса нагружения - токовая характеристика стартера. Мощность страгивания может достигать нескольких кВт:



Формально перед нами 2 кВт в пике, 1,5 кВт среднего, на 0-300 об/мин. Самое интересное здесь - 0-200А за 0,2 с, с превышением уровня потребления установившегося режима вращения в два раза.

Что делать со всем этим?

1.Модификация поверхности трения - "металлоплакирование".

Минеральное плакирование выглядит так:


При помощи мягких металлов:

Подробнее:
https://bmwservice.livejournal.com/144200.html
https://bmwservice.livejournal.com/184459.html

Принцип действия: это своего рода "полироль" или "мастика" для поверхности. Первая фактически изолирует пары трения металл-металл, вторая - меняет характер их взаимодействия (изнашивания), внедряясь в поверхность.
Ресурс: в зависимости от нагрузки, десятки тысяч км.
Аналогия: натереть паркет и бегать.
Сравнительная эффективность: средняя и высокая, зависит от типа сырья и дозировки.
Наибольшая заметность при использовании: низкие и средние обороты.

2.Слоистые модификаторы трения:


Формально - сухая маслонерастворимая смазка.

Принцип действия: физически присутствующая в паре контакта скользкая микропудра графита, дисульфида вольфрама, молибдена, нитрида бора, фторопласта и подобной органики. Для максимальной эффективности применения требует завешиваемости в объеме масла при помощи ПАВ, поэтому часто продается в виде готовых продуктов (концентратов).
Ресурс: эффективность сильно снижается после очередной замены масла, так как значительная часть препарата выливается вместе с маслом.
Аналогия: просыпать на пол муку и бегать.
Сравнительная эффективность: от низкой до высокой, в зависимости от типа и дозировки препарата.
Наибольшая заметность при использовании: низкие и средние обороты.

3.Модификация масла как жидкости (трения в слоях жидкости).

Сюда можно отнести некоторые полярные и неполярные фракции: эфиры (эстеры), ПАО, PAG, кроме того, различные модификаторы с иными принципами действия, влияющие на межмолекулярное взаимодействие.

Принцип действия: влияние внутреннего трения в слоях жидкости возрастает по мере увеличения давления в системе смазки и пропорционально оборотам, в то время, как доля контактного трения пропорционально снижается.
Ресурс: эффективность при замене масла полностью утрачивается, так как препарат выливается вместе с маслом/составляет основу масла.
Аналогия: пролить на пол воду и заморозить.
Сравнительная эффективность: от низкой до высокой.
Наибольшая заметность при использовании: средние и высокие обороты.

FAQ:

1."Что ж все производители масел/присадок/моторов вокруг такие глупые..."
Уже в конце 20-х годов прошлого века, крупные и передовые маслокомпании США, типа Quaker State, стали использовать в маслах присадочные пакеты соединений фосфора и цинка. Они досуществовали до сегодняшнего дня и в своем современном виде известны под аббревиатурой типа ZDDP. Это типично плакирующая присадка с низкой, по сегодняшним меркам, эффективностью. Но без нее было значительно хуже, несмотря на то, что масла "вообще без присадок", API SA по современной классификации, они же автолы, просуществовали в мире аж до конца 70-х годов. Так что в любом современном моторном масле есть примитивная, допотопная, но все же противоизносная плакирующая присадка.

2.С ZDDP общеизвестно, а остальные-то...
Соединения молибдена и графита в качестве модификаторов трения используют, например, Motul и LiquiMoly. Как правило, у масел этих сортов нет и не может быть специфических "допусков", присваеваемых производителями стандартных присадочных пакетов, зарабатывающих на "допусках" деньги. Поэтому данные продукты просто не могут получить общерекомендательный пропуск на массовый рынок. Парадоксально, но они чаще всего еще и самые дорогие/сложные в линейке, а производитель бравирует заявлениями типа "превосходит все известные допуски". Даже не "соответствует", а именно "превосходит":


Да, кстати, вот вам и отличный пример общедоступного масла с тремя технологиями разом: ZDDP как плакирующая, эфиры (полярная фракция - модификатор масляной основы) и молибден (слоистый модификатор трения).

Кроме того, например, более сложную модификацию "химии" масляной основы предлагает, например, такой известный премиум-бренд как Castrol:


Ну и так далее, если присмотреться, на самом деле - примеров много. Тут вопрос только лишь выбора производителя/продукта/типа технологии.

3.Постоянно слышу про раскоксовывание плакирующими присадками... а при чем тут это?!
Плакирующая присадка, почти не важно на какой основе, должна неизбежно добраться до металла - трением. Если на пути ее поверхностно активного материала в паре трения будет зола, его часть пойдет на ее оттирание:


Твердость зерен ГМТ, например, может достигать 3 единиц по Моосу. Медь, свинец, олово, сурьма - это все те же 2-3 единицы по шкале...

4.Не "испортит" ли это хон?
Твердости несопоставимы. Пряжку можно начистить мелом и даже песком, но полировкой содрать звезду с нее невозможно.

5.Если технологий как минимум три, какую выбрать?!
Никто не мешает, буквально, натереть паркет полиролью и дополнительно присыпать результат мукой. Так как принципы действия различны, обе указанных технологии работают совершенно независимо. Модификация свойств жидкости - тем более работает независимо, так как преимущественно эффективна выше по оборотам.

6.У меня общеизвестный в узких кругах двигатель с проблемным выкрашиванием распредвала, поможет ли?!
Забавно, что конструктивные просчеты в ГРМ, связанные с рабочим профилем кулачков, преследуют автолюбителей буквально с самого начала появления массовых форсированных конструкций европейской школы. Умные люди на этом целые предприятия основывают. На дворе XXI век, а ваша суперсовременная Honda, на маслах "со всеми допусками и присадками", как известно:


Скажем так: шансы на значительное снижение нагрузки и увеличение ресурса есть безусловно, но слой сравнительно тонкий, а изнашиваемость его в случае практически аварийной ситуации будет аномальной. Чтобы постоянно возобновлять слой, потребуется в скором времени потратить столько средств, что проще было бы в очередной раз заменить распредвал на (вероятно) наконец-таки модифицированную производителем версию...

7.Постоянно стою в пробках, преимущественно городская эксплуатация типа "старт-стоп" - у меня нет каких-то таких нагрузок, чтобы что-то такое использовать - нет смысла.
Парадоксально, но именно данные режимы делают использование чего-то подобного - делом первой важности. Режимы низкой частотности, разгона-торможения в условиях низкого давления масла - самые для металла неприятные. Вы, например, когда холодильник по кухне двигаете, все норовите под него воды подлить, чтобы стронуть было легко. Двигатель в этом смысле ничуть не сложнее устроен, а нагрузка на квадратный мм поверхности трения у него многократно выше. Там на 1 квадратный мм поверхности пары кулачок-толкатель установлено как раз по холодильнику...

8.Ну и где же результаты по улучшению износа?! В анализах многократно показывали, что результата-то нет!
ICP, как подробно рассмотрено здесь, исследовательской методикой не является и никогда не являлось. Разве что в воображении читателей форумов. Но справедливости ради, что называется, скажу, что на тех пробегах, пока масло не загрязнено(!), а это не более 100-200 моточасов (2500-5000 км по городу), содержание взвешенных продуктов износа в масле такой методикой вообще не регистрируется (находится в пределах методологической погрешности) практически для любого исправного масла/двигателя. Ближе к 10000 км, грязное масло начинает "натирать" металлы углеродной сажей и металлическая пудра начинает угрожающе расти по экспоненте. Чтобы сопоставить эффективность защиты в таком, прямо скажем, аварийном режиме, потребуется взять два полностью одинаковых автомобиля и сделать очень много анализов (а может все это и по нескольку раз), но я сделаю проще и нагляднее:


8.Меньше трения - значит больше мощности! Где графики?!
В понимании большинства читателей форумов, большая часть которых никогда не видела диностенда, мощностной стенд показывает некое "виртуальное все" о характеристиках двигателя. На самом деле, стенд строит лишь ВСХ двигателя в квазистационарном режиме (измерение проходит в течение десятка-полутора секунд), не измеряя переходные режимы - временные производные. Можно заработать 10000 рублей за час, а можно - за неделю. Но это формально будет все та же сумма. Можно отнести мешок массой 50 кг на 10 этаж за минуту и за час, а формально это останется все тот же "мешок 50 кг". ВСХ - паллиативная методика фиксации значения мощности для оборотов, достигнутая при полном открытии дросселя, обходящая вопросы режимов частичной и знакопеременной нагрузки. Если вы сейчас не осознали разницу, то у вас вообще нет проблем в материальном мире. Связь примерно такая же, как между мощностью двигателя и требуемой ее конверсией - временем разгона до 100 км/ч. Автомобили примерно равной мощности могут сильно отличаться в динамике. Более того - автомобиль сравнительно меньшей мощности, может иметь даже преимущество в динамике. Первое условие (мощность) - необходимо, но не достаточно. И тем не менее, практически все действующие модификаторы трения обеспечивают четко фиксируемую разницу в мощности на ВСХ от 1,5 до 3% даже в квазистационарном режиме, о чем свидетельствует, например, Motul и десятки моих личных экспериментов, но куда правильнее было бы измерять хотя бы(!) разгон:



Дополнение следует...

Tags: модификаторы, трения
Subscribe
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your IP address will be recorded 

  • 95 comments
Previous
← Ctrl ← Alt
Next
Ctrl → Alt →
Previous
← Ctrl ← Alt
Next
Ctrl → Alt →